WATER CHEMISTRY OF THE LOWER KOLYMA RIVER AND ITS TRIBUTARIES BASED ON DATA FOR THE SUMMER OF 2021

Danuta <u>Szumińska</u>¹, Krystyna Kozioł¹, Małgorzata Szopińska², Sergey R. Chalov³, Vasilii A. Efimov³, Marcin Frankowski⁴, and Żaneta Polkowska⁵

1. Kazimierz Wielki University, Faculty of Geographical Sciences, Bydgoszcz, Poland; 2. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland; 3. Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia; 4. Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland; 5. Gdańsk University of Technology, Faculty of Chemistry, Gdańsk, Poland

INTRODUCTION

A widespread permafrost degradation is forecasted in the Northern Hemisphere throughout the 21st century, evoking an urgent need to study its impacts. We focus on the potential influence of permafrost thaw on freshwater chemistry in the lower Kolyma basin. Samples were collected during the research expedition beetwen 19th and 21st July 2021 from Kolyma river, its tributaries – Omolon and Anyui, creeks along a permafrost cliff, and from permafrost ice (from yedoma) (Fig. 1). lons, metals, non-metals, and organic **carbon (OC)** were analysed in water samples (n = 18) in dissolved phase (filtered through Whatman® GFF 0.7 µm pore size membrane). Cluster analysis was performed to explore similarities between the sampled objects (samples) and parameters (variables) with the use of TIBCO® Statistica software (version 13.3). Variable clustering and sample clustering have both been run as tree diagrams, using Ward's method and squared Euclidean distance. Enrichment factors of elements were also calculated based on published mean concentrations in river water (dissolved phase).

RESULTS and DISCUSSION

We measured 9.1 mg L⁻¹ DOC in permafrost ice, 1.9 - 4.8 mg L⁻¹ in rivers, and 106 -

MEASUREMENT INSTRUMENTATION

Table 2 Technical specifications used in the applied analytical procedures

ANALYTES/ **PARAMETERS**

MEASUREMENT INSTRUMENTATION

CONCLUSIONS

In our study we found increased values of several metals in all studied fresh waters, which belong to the different levels of the hydrological network, including the waters fed directly by permafrost thaw. Some of the detected metals may be toxic for living organisms.

Metals & metalloids	ICP-MS & ICP-OES
	Elan DRC, PerkinElmer, USA
cations & anions	ION CHROMATOGRAPH
	DIONEX 3000 chromatograph, US

pH & conductivity YSI multiparameter probe, Digital Professional Series

Fresh waters originating from permafrost thaw and suprapermafrost aquifer are characterised by the highest concentration of DOC, inorganic ions, and selected heavy metals.

The impact of changes in permafrost regions, occurring due to climate change, needs to be considered with respect to both the remobilisation from older permafrost (of organic carbon and other chemical components) and the interference with newly deposited anthropogenic contaminants

ACKNOWLEDGMENTS

This research was funded by INTERACT, H2020-EU.1.4.1.2., grant number 730938; project: PollAct. We are also grateful to North-East Science Station in Cherskii for their suport during fieldwork in summer 2021

Correspondence: Danuta Szumińska, Faculty of Geographical Sciences, Kazimierz Wielki University, Bydgoszcz, Poland, email: hydrorivers@gmail.com; dszum@ukw.edu.pl

The Arctic Science Summit Week 2023, 17-24 February 2023, Vienna, Austria