Spectral Characteristics of the Arctic Vegetation in Adventdalen, Svalbard

Junyoung Yang^{1,2}, Yoo-Kyung Lee^{1,2} and Junhwa Chi¹*

Korea Polar Research Institute, Incheon 21990, Republic of Korea ²University of Science and Technology, Incheon 21990, Republic of Korea *Corresponding author: jhchi@kopri.re.kr

1. Introduction

- · Remote sensing has been widely used in understanding the Arctic ecosystem.
- Spectral information, a proxy for understanding the characteristics of the ground target, can support the quantitative analysis of remote sensing, spectral library, serves as reference data in remote sensing analyses, is a database of digital reflectance spectra from ground truth data, spectral library plays an important role in identifying the targets and quantifying their abundance.
- Previous studies have addressed the Arctic ecosystem using remote sensing data [1, 2]. However, spectral information was limited, and similar vegetation structures cause poor spectral discriminability
- To address these limitations, this study has two research purposes:
- (1) Development of a spectral library for six dominant species in Adventdalen, Svalbard: Dryas octopetala, Eriophorum scheuchzeri ssp. arcticum, Equisetum sp., Bistorta vivipara, Cassiope tetragona, and Salix polaris
- (2) Investigation of an effective strategy for identifying the Arctic plant species from remote sensing imagerv

2. Method

- Hyperspectral images were acquired using a hyperspectral
- camera Specim IQ across the 400 to 1000 nm wavelength range at a spectral resolution of approximately 3 nm. The hyperspectral image contained 204 bands. Reflectance values were converted using a white
- calibration target (Spectralon). However, the 900 to 1000 nm wavelength range was removed as noisv data.
- The spectral similarity, comparing the spectral discriminability between two spectra, was measured using six measures: Spectral Distance Similarity (SDS), Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), Spectral CorrelationAngle (SCA), SIDxSAM-sin, and SCAxSAM-sin (Table 1) [3].
- To evaluate the performance of the measures, Probability of Spectral Discriminability (PSD) was used as an objective statistical criterion [3].
- The present research proposed two approaches for the effective classification of Arctic vegetation to overcome the poor spectral discriminability of the Arctic plant species:
- (i) First derivative was applied to the original hyperspectral reflectance data to effectively classify the Arctic plants [4].
- (ii) Optimal wavelength and ratio value, distinguishing a species from other species in remote sensing data, were determined

Method	Mathematical function					
SDS	$SDS = \frac{\sqrt{\sum_{i=1}^{n} (x_i - y_i)}}{\sqrt{n}}$					
SAM	$SAM = \cos^{-1} \frac{\sqrt{\sum_{i=1}^{m} (x_i - y_i)}}{\sqrt{\sum_{i=1}^{m} x_i^2} \sqrt{\sum_{i=1}^{m} y_i^2}}$					
SID	$p_i = x_i / \sum_{\ell=1}^n x_i , \ q_i = y_i / \sum_{\ell=1}^n y_i \qquad SID = \sum_{\ell=1}^n p_i \log \frac{n}{q_i} + \sum_{\ell=1}^n q_i \log \frac{n}{p_i}$					
SCA	$r_{z_{1},z_{1}} = \frac{\pi \sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} y_{i}}{\sqrt{\pi \sum_{i=1}^{n} x_{i}^{-1} - (\sum_{i=1}^{n} x_{i})^{2} \sqrt{\pi \sum_{i=1}^{n} y_{i}^{-1} - (\sum_{i=1}^{n} y_{i})^{2}}} SCA = \cos^{-1}(\frac{r_{z_{1},y_{1}} + 1}{2})$					
SIDxSAM-sin	Hybrid Method : SID x sin (SAM)					
SCAxSAM-sin	Hybrid Method : SCA x sin (SAM)					

Table 1. List of spectral similarity measures

3. Result

3.1. Spectral Library

- The spectral library of six Arctic plant species was developed using Region of Interest (ROI) associated with each plant species in optical images using ENVI software (Figure 1)
- All ROIs consisted of 1,000 pixels except for Bistorta vivipara (300 pixels) due to a lack of relevant pixels

Six dominant species Eriophorum scheuchzeri ssp. arcticum (V2) Equisetum sp. (V3)

vivinara (V4) Cassiope tetragona (V5) Salix polaris (V6

Figure 1. Spectral library of six Arctic plant species

3.2. Spectral Similarity Measures

The low values of spectral similarity measure between two spectra indicated poor	Table 2	Table 2. Values of spectral similarity measure between two spectra of six plant species							
discriminability in Table 2.		SDS	SAM	SID	SCA	SIDxSAM- sin	SIDxSCA- sin		
PSDs were compared according to the spectr	V1-V2	0.045	0.055	0.011	0.054	0.001	0.001		
- PSDs were compared according to the speci	di V1-V3	0.045	0.036	0.006	0.030	0.000	0.000		
similarity measures and species in Table 3.	V1-V4	0.037	0.057	0.013	0.056	0.001	0.001		
• S natoria (NS) showed relatively high everall	V1-V5	0.077	0.025	0.002	0.024	0.000	0.000		
• S. polans (V6) showed relatively high overall	V1-V6	0.084	0.084	0.021	0.072	0.002	0.001		
PSDs compared to other species in Figure 2.	V2-V3	0.012	0.033	0.003	0.034	0.000	0.000		
• 0D0	V2-V4	0.021	0.054	0.011	0.045	0.001	0.000		
 SDS was most effective measure for identifying 	1g v2-v5	0.119	0.068	0.010	0.071	0.001	0.001		
C. tetragona (V5) from the hyperspectral data	of v2-v6	0.045	0.070	0.025	0.034	0.002	0.001		
Arctic plants (Figure 2)	V3-V4	0.026	0.065	0.017	0.056	0.001	0.001		
, a cao planto (1.garo 2).	V3-V5	0.121	0.049	0.006	0.050	0.000	0.000		
 However, the spectral discriminability of Arctic 	V3-V6	0.046	0.088	0.031	0.060	0.003	0.002		
plant species was not significant for	V4-V5	0.111	0.068	0.014	0.065	0.001	0.001		
	V4-V6	0.050	0.042	0.007	0.030	0.000	0.000		
classification.	V5-V6	0.159	0.100	0.028	0.085	0.003	0.002		

Table 3. Probability of Spectral Discrimination

produced by the measures							
	SDS	SAM	SID	SCA	SIDxSAM -sin	SIDxSCA- sin	
V1	0.289	0.288	0.258	0.308	0.229	0.257	
V2	0.242	0.312	0.290	0.311	0.252	0.232	
V3	0.250	0.303	0.312	0.301	0.308	0.292	
V4	0.245	0.320	0.303	0.329	0.252	0.279	
V5	0.589	0.347	0.294	0.384	0.326	0.366	
V6	0.385	0.430	0.542	0.367	0.633	0.573	
Entropy	2.073	2.179	2.125	2.189	2.050	2.091	

Figure 2. Probability of Spectral Discrimination in the bar chart

3.3. Derivative Analysis

- Compared to the original spectrum, spectral discriminability of the first derivative-spectrum (Figure 3) increased in SAM measure (Figure. 4).
- This result indicates that derivative analysis is effective in improving the spectral discriminability and can contribute to the Arctic plant species classification.

Figure 3. Derivative-spectral library of six Arctic plant species

3.4. Vegetation Index/Simple Ratio

- All species were evaluated using vegetation indices listed in Table 4 [5]
- · Index values according to species and indices were listed in Table 5, highlighting the most effective values
- D. octopetala, E. scheuchzeri ssp. arcticum, Equisetum sp. and C. tetragona were separated from other species using the optimal index values, but B. vivipara and S. polaris were difficult to identify.

Table 4. Vegetation Indices using in the study			Table 5. Optimal indices of Arctic plant species						
Index	Name	Mathematical function		557nm/ 684nm	684nm/ 774nm	Reverse RGR	TVI	mNDVI705	
Reverse-RGR	Reverse-Red Green R atio	$\frac{(R500 - R599)}{(R600 - R699)}$	Dryas octopetala	3.016	0.081	1.004	38.067	0.418	
TVI	Triangular vegetation index	0.5 * (120 * (<i>R</i> 750 – <i>R</i> 550) – 200 * (<i>R</i> 670 – <i>R</i> 550)	Eriophorum scheuchzeri	2.016	<mark>0.122</mark>	0.891	31.751	0.515	
			Equisetum sp	2.485	0.108	1.185	32.701	0.461	
			Bistorta vivipara	1.725	0.095	0.581	32.726	0.549	
mNDVI705	Modified normalized difference vegetation index 705	$\frac{R750 - R705}{(R750 + R705 - 2R445)}$	Cassiope tetragona	2.305	0.099	0.913	<mark>44.034</mark>	0.382	
			Salix polaris	2.036	0.079	0.615	28.61	0.597	

Figure 5. Index (557nm/684nm > 2.9) application in the hyperspectral images

4. Summary

- · We developed a spectral library of six dominant plant species in the Adventdalen, Svalbard.
- Our result presented the optimal vegetation indices and derivative analysis as strategies for identifying each species from remote sensing imagery.
- The proposed approaches can provide detailed vegetation maps using remote sensing imagery and improve understanding of the Arctic ecosystem.

Reference

- Eischeid, Isabell, et al. "Disturbance Mapping in Arctic Tundra Improved by a Planning Workflow for Drone Studies: Advancing Tools for Future Ecosystem Monitoring:" *Remote Sensing* 13 21 (2021): 4466. Tømmervik, Hans, et al. "Use of unmanned aircraft systems (UAS) in a multi-scale vegetation index study of arctic plant communities in Adventdalen on Sva (2014).
- (2014). Du, Yingi, et al. "New hyperspectral discrimination measure for spectral characterization." Optical engineering 43.8 (2004): 1777-1786. Yamano, H., J. Chen, and M. Tamura. "Hyperspectral identification of grassland vegetation in Xilinhot, Inner Morgolia, China." International Journal of Remote Sensing 24.15 (2003) 3171-3178. Zagajewaki, Bogdan, et al. "Resubility of hyperspectral vegetation indices for the detection of Allotophyll concentration in three high Arctic plants: Salix polaris, Biotra whyrae, and Oryae otopetala." Acta Societation Sancincum Photophyll 67.4 (2018). 5.

Figure 4. Heat-map comparison between original spectrum and derivative spectrum in SAM measure